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Abstract We report on the use of Bayesian estimation
in the analysis of IVS INTO1 sessions. We demonstrate
that the use of a priori knowledge improves the accu-
racy of the UT1 estimates. We look at two cases—the
incorporation of gradients estimated from independent
R1 and R4 sessions and the use of an external model of
Free Core nutation. In each case we find the magnitude
of the change in the UT1 estimates induced by using
the a priori information. We also calculate the improve-
ment in the accuracy of the Intensives as measured by
the agreement between the Intensive estimate of UT1
and that of a concurrently run R1/R4 session. In both
cases, the accuracy is improved, and the amount of im-
provement is consistent with expectations based on the
size of the effect.
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1 Introduction

VLBI makes important contributions to the estima-
tion of Earth Orientation Parameters and is unique in
its ability to measure UT1 [1]. Because of this, the
IVS schedules bi-weekly 24-hour R1 (Monday) and
R4 (Thursday) sessions to measure all components of
EOP. The IVS also schedules special one-hour sessions
designed specifically to measure UT1. These Intensive
sessions have a small number of stations (typically two
to four) involving long East-West baselines and run for
about one hour, resulting in 15—40 observations. Nor-
mally data from these sessions is transmitted electroni-
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cally to the correlator, and the final UT1 estimate is of-
ten available within < 24 hours after the session ends.
But the very characteristics of short duration and small
network size that makes rapid transmission, correla-
tion, and analysis possible also means that the preci-
sion of the Intensives is much less than that of 24-hour
VLBI sessions. Anything that can improve the accu-
racy and/or the precision of the Intensives is important.

In this paper our data set is the INTO1 series which
are scheduled by USNO, run Monday-Friday, and use
the Kokee—Wettzell baseline. These sessions are sched-
uled using two alternating strategies. The STN uses a
small set of strong sources with uneven sky coverage.
The MSS uses a large set of sources that are on aver-
age weaker but have good sky coverage. Sessions can
behave differently depending on the strategy used to
schedule them, so we typically divide the INTO1 ses-
sions into STN and MSS subsets for analysis [2]. Ul-
timately we are interested in the accuracy of the UT1
estimates. Because of this we further restrict our atten-
tion to only those Intensives that occur on the same day
as an independent R1/R4 session. Our proxy for the
accuracy is the difference between the Intensive UT1
estimate and that of the concurrent R1/R4 session in-
terpolated to the same epoch. Figure 1 plots this dif-
ference for 2011-2012. The STN estimates differ from
the 24-hour estimates by up to ~100 ps, and the MSS
estimates differ by up to ~70 ps. The standard devia-
tions of the differences are also high—30.68 us for the
STN and 21.04 ps for the MSS.

Our primary goal is to improve the a priori mod-
els used in the Intensives, and to verify that this results
in more accurate UT1 estimates. As a side-effect, we
determine the change in the UT1 estimates caused by
changing the a priori. This is similar to work done pre-
viously by Nothnagel and Schnell [5] who looked at
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Fig. 1 Differences between UT1 estimates from IVS 24-hour
and operational INTO1 STN (left) and MSS (right) sessions.

the effect of errors in Polar Motion (PM) and Nutation
(FCN) and found they were signficant. Gipson et al. [3]
redid this work and extended it to include the effect of
errors in station position, mapping functions, and at-
mosphere gradients. They determined which modeling
errors have potentially the largest impact on UT1 (East,
PM, FCN, gradients) and hence should have a priority
on improved modeling, and which error sources had a
small effect (e.g., Up and North) and could be ignored.

Gipson et al. [3] also demonstrated that using PM
and nutation estimates derived from concurrent 24-
hour R1/R4 sessions in Intensive analysis improved the
agreement between the Intensive and R1/R4 estimates
of UT1. We extend this work by demonstrating that us-
ing atmospheric gradients from 24-hour sessions also
improves the agreement. Such an approach is not pos-
sible operationally, because the results from the R1/R4
sessions are not available until several weeks later. We
also looked at improving the a priori modeling by us-
ing data which is available at the time of the Intensive
processing, namely using FCN values from Sébastien
Lambert’s FCN series [4]. We find that use of this data
improves the agreement between the Intensive and 24-
hour session estimates.

In Sections 2 and 3 we discuss our general ap-
proach. In Section 4 we look at using gradient esti-
mates from R1/R4 sessions. In Section 5 we look at
applying external FCN. Section 6 has some concluding
remarks. We find that the use of better a priori informa-
tion improves the accuracy of Intensive UT1 estimates
and that the magnitude is in line with what you would
expect based on the effect of the error. But the resulting
change in the accuracy is small, 1-2 ps or less.

2 Augmented Normal Equations

Least squares estimation involves solving the matrix
equation A = N~'B, where A is the parameter esti-

mate vector, N is the normal matrix of weighted par-
tial derivatives, and B is the ‘O-C’ (=*“Observed minus
Calculated”) vector. INTO1 sessions have a small (~
16 to 25) number of observations and only allow esti-
mation of a few (typically five) parameters which are:
atmosphere offsets at Kokee and Wettzell; clock and
clock rate at Wettzell; and UT1 offset. Sometimes a
quadratic clock term is estimated as well.

An important and often unstated implicit assump-
tion is that the a priori models are correct. We know
that this assumption is incorrect, because, for exam-
ple, when we estimate PM in a 24-hour session we get
non-zero values. An error in an underlying model will
change the ‘O-C’ vector, which in turn will change the
estimates.

To address this issue, we construct the normal equa-
tions for the Intensives with additional parameters cor-
responding to possible errors in the a priori. We call
these ‘augmented’ normal equations. These may be
singular because we may not have enough data to esti-
mate the parameters. To fix this we apply additional
information in the form of constraints. We call this
approach ‘Bayesian’. Explicitly, let a be the index of
an extra parameter A,, and assume that we know that
A, has the value V, with an uncertainty of o,. We
modify the normal equations thus: Ny — Ngg + 1/ 0'[12,
B, — B, +V,/c? with all other components staying
the same. Effectively we are introducing extra “obser-
vations” corresponding to the constraint. If V, = 0, in
the limit o, — 0 we recover the usual UT1 estimate.
Non-zero values of V,, and o, change the UT1 estimate.

3 Effect of Changing a Priori

In this section we establish some notation and derive
some results. Let j label an Intensive, and let UT 1p,y
(respectively, UT 1104, ;) be the UTI estimate from the
default (respectively, modified) processing. Also let
UT 124, be the UT1 estimate from a corresponding 24-
hour session, interpolated to the epoch of the Intensive.
We are interested in the following quantities:

AUT1pesj = UTlpes,j—UT o4 (1)
AUT ygoa,; = UT Lygoa j — UT Loy )
SUTlMod,j = UT]DefJ'_UTlMOd,j (3)

The first two are the differences between the Intensive
and the 24-hour estimate of UT1, and will be useful in
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determining the accuracy of Intensive UT1 estimates.
The third defines the effect of modifying the analysis
of the Intensive. For any series f, g, define:

N
<f-g>=) figi/N @)
J
As N goes to infinity this is just the expectation value.

Let €4,; denote the error in UTI (here A is one of
Def, Mod, or 24). Then we find, for example,

AUT 1pey,j = Epey,j — €24, ®)
Consider
2 g2 2
<AUTpep > = < Epyp > + < €34 >
—2 < €pey- €24 > (6)

The errors in the 24-hour and Intensive UT1 estimates
should not be correlated. Hence for large N the last
term on the Right Hand Side (RHS) should vanish. Fur-
ther, because the formal errors for the Intensives are a
factor of 5-10 larger than for the 24-hour sessions we
expect that &5, >> &7, . This means the second term
can be ignored. We are left with:
<AUT 1}, >~< €f,p > (7)

The symbol ~ means the equality holds for large N.
This means that we can calculate the expected error
(€pey) by calculating < UT13, ;>

Suppose that we modify the analysis of the Inten-
sives in some way. What is the expected error in these
new estimates? Analogous to Equation 7, we find:

<AUT1},y >=< €pg > 8)
Note that by Equations 2 and 3 we have:
AUT Ipoa = UT Ipgoa —UT 124 )

=UTlpef— OUT 1p10q —UT 194
= AUT 1pes — 6UT lyp0q

Hence

<AUT13,y > = < (AUT Ipes — SUT lyppq)* >(10)
= <AUT 1} >+ < 8UT 13,y >
-2< 5UT1M0d ‘AUTlDef >

We consider two alternatives. First, suppose that
OUT 1,4 is noise-like. In this case it will be uncorre-
lated with both UT 1p,y and UT 124:

< 8UTlypg-UT 1oy >~ 0
< SUTIM(,d-UTIDef >~0

Y

Using Equation 1 < 8UTlyeq - AUT 1pey >~ 0.
Hence for a noise-like signal we have:

< g =< Epyp >+ < SUT1jyp0 > (12)

As expected, adding noise increases the error. At the
other extreme, suppose that &y,; removes noise from
UT1peys. In this case we still expect it to be uncor-
related with UT 1,4, but it should be correlated with
UT1pey:

< SUTIM,,d-Ulezl >~0
< 8UT1p10q-UT pey > =~ < SUT 13,4 >
+2 < 6UT1M(,L1~AUT1M(,L] >

13)

where the last term is effectively zero. Going through
the same analysis of Equation 10 as previously:

< g >=< oy > — < SUT 1300 > (14)

hence adding the signal SUT 14,4 reduces the error.

4 Use of R1/R4 Gradients

In the analysis of the 24-hour and Intensive sessions the
a priori gradient is the average gradient at a site com-
puted from a numerical weather model. In the 24-hour
sessions we estimate residual East-West and North-
South gradients as a Piece-Wise-Linear function with
rate breaks every six hours. In the Intensives we do not.

To incorporate additional information about gradi-
ents into the Intensives we augment the Intensive nor-
mal equations to include residual gradients. We restrict
attention to only those Intensives that occur on the
same day as R1/R4 sessions that include both Kokee
and Wettzell. Out of the original 74 STN and 70 MSS
sessions we were left with 54 and 53 sessions, respec-
tively. The R1/R4 residual gradient estimates are inter-
polated to the epoch of the Intensives. The Intensive
gradient estimates are constrained to these values with
small sigmas.
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In analogy with Equation 1, define the following:

6UT1Grad,j = UTlDefJ—UTlGrad,j
AUTIDef_’j = UTlDef’jfUT1247j
AUT1Graa,j = UT1Graa,j —UT 124

5)

The first of these is just the change in UT1 estimates
caused by including gradients and is plotted in Fig-
ure 2. The second+third items are the distance between
the Intensive and 24-hour estimates. Because the er-
rors in the 24-hour sessions are much smaller, these are
a measure of the error in the Intensive estimates. Fig-
ure 3 plots |[AUT 1pey,j| — |[AUT 1Graa, j| Which we call
the reduction in absolute error. The first term is the dis-
tance between the default Intensive and 24-hour esti-
mate of UT1, while the second is the distance when we
use gradients. If this is positive, using gradients helped.

Fig. 2 Effect of using gradient estimates on STN (left) and MSS
(right) INTO1 UT1 estimates (us).

Fig. 3 Reduction in absolute error for STN (left) and MSS (right)
INTO1 sessions (us) from using gradients.

As demonstrated in the previous section, the RMS
of AUT1p.s (AUT 1Gyqq) is a measure of the error in
the default (gradient) estimate of UT1 from the Inten-
sives. Table 1 lists these values. Using gradients im-
proves the accuracy, although the amount is small. This
table also lists the RMS of 6UT 15,44 Which is a mea-
sure of the size of the ‘gradient signal’ in the UT1 esti-
mate. Gradients change the UT1 estimate by ~ 7.5 ps,
which is a large effect. This may seem in contradiction
to the small change in error. But as shown in the previ-
ous section,

RMSSUT 1 Gyaq =~ \/< AUT13,, > — < AUT1%,,, >

which relates the size of the gradient signal to a re-
duction in the variance. Table 1 displays the RHS of
this equation. Note that these values are within 20% of
OUT 1G,4q Which is a resonable agreement.

Table 1 Effect of atmospheric gradients in ps.

STN| MSS
RMS AUT 1p,f 29.30(21.73
RMS AUT 1Graa 28.42(19.84
Improvement in RMS 0.88| 1.89
RMS 8UT 1Graa 7.46| 7.62
J<AUTT, > —<AUTL, > | 655| 8.98
Average reduction in absolute error| 0.77| 0.58

5 Use of Empirical Free Core Nutation

Sébastien Lambert (SYRTE, Observatoire de Paris) de-
veloped and maintains a model of the FCN derived
from the IERS EOP 08 C04 series. The nutation val-
ues in the IERS C04 come from VLBI estimates of the
FCN, and hence Lambert’s model should be consistent
with our estimates from the R1s and R4s. The major
obstacle to using Lambert’s FCN series directly is that
it is given in terms of nutation X and Y, whereas our
software used y and €. We wrote software to convert
between these two, and Figure 4 shows good agree-
ment between the transformed FCN values from Lam-
bert and our FCN estimates from the R1/R4 series.
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—e—Solve psi estimates  —e—Transformed FCN X —e—Solve Eps estimates  —e—=Transformed FCN Y

Fig. 4 Left: agreement between transformed FCN X values and
Solve ¥ estimates (uas). Right: agreement between transformed
FCN Y values and Solve € estimates (uas).

To use this FCN data in analyzing the Intensives
we used exactly the same technique as for the gradi-
ents. We augmented the Intensive normal equations to
include estimates of nutation. We interpolated the ex-
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ternal FCN model values to the epoch of the Intensives
and then applied these a priori values with tight con-
straints. In contrast to the previous case where we used
gradient values from R1/R4 sessions, in principle we
can do this for all sessions. To evaluate the effect of
this, however, we limit our attention here to only those
sessions which occur on the same day as an R1/R4 ses-
sion.

Figure 5 plots SUT 1pcy, the change in UT1 esti-
mates caused by incorporating FCN. Figure 6 plots the
reduction in absolute error from using external FCN
data.
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Fig. 5 Effect of using free core nutation on STN (left) and MSS
(right) INTO1 UT1 estimates (us).

Fig. 6 Reduction in absolute error for STN (left) and MSS (right)
INTO1 sessions (us) from using FCN.

Table 2 summarizes the effect of using external
FCN in the estimate of UT1 from the Intensives. The
use of FCN helps, but the reduction is small, only a
fraction of ps. On the other hand this reduction is in
line with what you would expect based on the size of
OFCN.

Table 2 Effect of Free Core Nutation in ps.

STN| MSS
RMS AUT 1p,s 31.15(20.89
RMS AUT 1pen 30.97(20.60
Improvement in RMS 0.18| 0.29
RMS OUT 1 ey 3.80| 3.32
\/<AUTIS, > — <AUT13y > | 330 349
Average reduction in absolute error| 0.66| 0.12

6 Conclusions

In this note we demonstrated that you can improve
the accuracy of UT1 estimates from Intensive sessions
by the use of a priori information. We looked at two
cases—the use of gradient information from R1/R4
sessions and the use of an external FCN model. The
reduction was largest when we used gradient informa-
tion. But this information is not available for the op-
erational analysis of Intensives because the R1/R4 ses-
sions are not processed until several weeks after the
Intensives are. On the other hand, there may be other
sources of gradient information which are available
during processing, such as from the IGS.

The use of external FCN information improved the
accuracy of the UT1 estimates, but the impact was very
small. This information is available at the time the In-
tensives are processed, and we will modify our soft-
ware to use it.

We also note that in both cases, the reduction in er-
ror was larger for the MSS sessions. We believe that
this is due to the fact that the error in the MSS sessions
is smaller to begin with, and hence they are more sen-
sitive to small changes in the modeling.
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